Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Genus bounds for twisted quantum invariants (2211.15010v1)

Published 28 Nov 2022 in math.QA and math.GT

Abstract: By twisted quantum invariants we mean polynomial invariants of knots in the three-sphere endowed with a representation of the fundamental group into the automorphism group of a Hopf algebra $H$. These are obtained by the Reshetikhin-Turaev construction extended to the $\mathrm{Aut}(H)$-twisted Drinfeld double of $H$, provided $H$ is finite dimensional and $\mathbb{N}m$-graded. We show that the degree of these polynomials is bounded above by $2g(K)\cdot d(H)$ where $g(K)$ is the Seifert genus of a knot $K$ and $d(H)$ is the top degree of the Hopf algebra. When $H$ is an exterior algebra, our theorem recovers Friedl and Kim's genus bounds for twisted Alexander polynomials. When $H$ is the Borel part of restricted quantum $\mathfrak{sl}_2$ at an even root of unity, we show that our invariant is the ADO invariant, therefore giving new genus bounds for these invariants.

Summary

We haven't generated a summary for this paper yet.