Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Attribution-based XAI Methods in Computer Vision: A Review (2211.14736v1)

Published 27 Nov 2022 in cs.CV and cs.AI

Abstract: The advancements in deep learning-based methods for visual perception tasks have seen astounding growth in the last decade, with widespread adoption in a plethora of application areas from autonomous driving to clinical decision support systems. Despite their impressive performance, these deep learning-based models remain fairly opaque in their decision-making process, making their deployment in human-critical tasks a risky endeavor. This in turn makes understanding the decisions made by these models crucial for their reliable deployment. Explainable AI (XAI) methods attempt to address this by offering explanations for such black-box deep learning methods. In this paper, we provide a comprehensive survey of attribution-based XAI methods in computer vision and review the existing literature for gradient-based, perturbation-based, and contrastive methods for XAI, and provide insights on the key challenges in developing and evaluating robust XAI methods.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Kumar Abhishek (26 papers)
  2. Deeksha Kamath (1 paper)
Citations (14)