Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The distribution of syntactic dependency distances (2211.14620v1)

Published 26 Nov 2022 in cs.CL

Abstract: The syntactic structure of a sentence can be represented as a graph where vertices are words and edges indicate syntactic dependencies between them. In this setting, the distance between two syntactically linked words can be defined as the difference between their positions. Here we want to contribute to the characterization of the actual distribution of syntactic dependency distances, and unveil its relationship with short-term memory limitations. We propose a new double-exponential model in which decay in probability is allowed to change after a break-point. This transition could mirror the transition from the processing of words chunks to higher-level structures. We find that a two-regime model -- where the first regime follows either an exponential or a power-law decay -- is the most likely one in all 20 languages we considered, independently of sentence length and annotation style. Moreover, the break-point is fairly stable across languages and averages values of 4-5 words, suggesting that the amount of words that can be simultaneously processed abstracts from the specific language to a high degree. Finally, we give an account of the relation between the best estimated model and the closeness of syntactic dependencies, as measured by a recently introduced optimality score.

Citations (2)

Summary

We haven't generated a summary for this paper yet.