Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A graph discretized approximation of semigroups for diffusion with drift and killing on a complete Riemannian manifold (2211.14472v2)

Published 26 Nov 2022 in math.FA, math.DG, and math.PR

Abstract: In the present paper, we prove that the $C_{0}$-semigroup generated by a Schr\"odinger operator with drift on a complete Riemannian manifold is approximated by the discrete semigroups associated with a family of discrete time random walks with killing in a flow on a sequence of proximity graphs, which are constructed by partitions of the manifold. Furthermore, when the manifold is compact, we also obtain a quantitative error estimate of the convergence. Finally, we give examples of the partition of the manifold and the drift term on two typical manifolds: Euclidean spaces and model manifolds.

Citations (2)

Summary

We haven't generated a summary for this paper yet.