Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Non-invasive Liver Fibrosis Screening on CT Images using Radiomics (2211.14396v2)

Published 25 Nov 2022 in cs.CV, cs.LG, and q-bio.QM

Abstract: Objectives: To develop and evaluate a radiomics machine learning model for detecting liver fibrosis on CT of the liver. Methods: For this retrospective, single-centre study, radiomic features were extracted from Regions of Interest (ROIs) on CT images of patients who underwent simultaneous liver biopsy and CT examinations. Combinations of contrast, normalization, machine learning model, and feature selection method were determined based on their mean test Area Under the Receiver Operating Characteristic curve (AUC) on randomly placed ROIs. The combination and selected features with the highest AUC were used to develop a final liver fibrosis screening model. Results: The study included 101 male and 68 female patients (mean age = 51.2 years $\pm$ 14.7 [SD]). When averaging the AUC across all combinations, non-contrast enhanced (NC) CT (AUC, 0.6100; 95% CI: 0.5897, 0.6303) outperformed contrast-enhanced CT (AUC, 0.5680; 95% CI: 0.5471, 0.5890). The combination of hyperparameters and features that yielded the highest AUC was a logistic regression model with inputs features of maximum, energy, kurtosis, skewness, and small area high gray level emphasis extracted from non-contrast enhanced NC CT normalized using Gamma correction with $\gamma$ = 1.5 (AUC, 0.7833; 95% CI: 0.7821, 0.7845), (sensitivity, 0.9091; 95% CI: 0.9091, 0.9091). Conclusions: Radiomics-based machine learning models allow for the detection of liver fibrosis with reasonable accuracy and high sensitivity on NC CT. Thus, these models can be used to non-invasively screen for liver fibrosis, contributing to earlier detection of the disease at a potentially curable stage.

Summary

We haven't generated a summary for this paper yet.