Graded Lie algebras, Fourier transform and primitive pairs (2211.14217v1)
Abstract: In this paper we study the Fourier transform on graded Lie algebras. Let $G$ be a complex, connected, reductive, algebraic group, and $\chi:\mathbb{C}\times \to G$ be a fixed cocharacter that defines a grading on $\mathfrak{g}$, the Lie algebra of $G$. Let $G_0$ be the centralizer of $\chi(\mathbb{C}\times)$. Here under some assumptions on the field $\Bbbk$ and also assuming two conjectures for the group $G$, we prove that the Fourier transform sends parity complexes to parity complexes. Primitive pairs have played an important role in Lusztig's paper \cite{Lu} to prove a block decomposition in the graded setting. A long term goal of this project is to prove a similar block decomposition in positive characteristic. In this paper we have tried to understand the primitive pair and its relation with the Fourier transform.