Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Interval-censored Transformer Hawkes: Detecting Information Operations using the Reaction of Social Systems (2211.14114v2)

Published 25 Nov 2022 in cs.SI

Abstract: Social media is being increasingly weaponized by state-backed actors to elicit reactions, push narratives and sway public opinion. These are known as Information Operations (IO). The covert nature of IO makes their detection difficult. This is further amplified by missing data due to the user and content removal and privacy requirements. This work advances the hypothesis that the very reactions that Information Operations seek to elicit within the target social systems can be used to detect them. We propose an Interval-censored Transformer Hawkes (IC-TH) architecture and a novel data encoding scheme to account for both observed and missing data. We derive a novel log-likelihood function that we deploy together with a contrastive learning procedure. We showcase the performance of IC-TH on three real-world Twitter datasets and two learning tasks: future popularity prediction and item category prediction. The latter is particularly significant. Using the retweeting timing and patterns solely, we can predict the category of YouTube videos, guess whether news publishers are reputable or controversial and, most importantly, identify state-backed IO agent accounts. Additional qualitative investigations uncover that the automatically discovered clusters of Russian-backed agents appear to coordinate their behavior, activating simultaneously to push specific narratives.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com