Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Chen--Ruan cohomology and orbifold Euler characteristic of moduli spaces of parabolic bundles (2211.13660v3)

Published 24 Nov 2022 in math.AG

Abstract: We consider the moduli space of stable parabolic Higgs bundles of rank $r$ and fixed determinant, and having full flag quasi-parabolic structures over an arbitrary parabolic divisor on a smooth complex projective curve $X$ of genus $g$, with $g\,\geq\, 2$. The group $\Gamma$ of $r$-torsion points of the Jacobian of $X$ acts on this moduli space. We describe the connected components of the various fixed point loci of this moduli under non-trivial elements from $\Gamma$. When the Higgs field is zero, or in other words when we restrict ourselves to the moduli of stable parabolic bundles, we also compute the orbifold Euler characteristic of the corresponding global quotient orbifold. We also describe the Chen--Ruan cohomology groups of this orbifold under certain conditions on the rank and degree, and describe the Chen--Ruan product structure in special cases.

Summary

We haven't generated a summary for this paper yet.