Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Invariant Rules from Data for Interpretable Anomaly Detection (2211.13577v3)

Published 24 Nov 2022 in cs.LG and cs.AI

Abstract: In the research area of anomaly detection, novel and promising methods are frequently developed. However, most existing studies exclusively focus on the detection task only and ignore the interpretability of the underlying models as well as their detection results. Nevertheless, anomaly interpretation, which aims to provide explanation of why specific data instances are identified as anomalies, is an equally important task in many real-world applications. In this work, we propose a novel framework which synergizes several machine learning and data mining techniques to automatically learn invariant rules that are consistently satisfied in a given dataset. The learned invariant rules can provide explicit explanation of anomaly detection results in the inference phase and thus are extremely useful for subsequent decision-making regarding reported anomalies. Furthermore, our empirical evaluation shows that the proposed method can also achieve comparable or even better performance in terms of AUC and partial AUC on public benchmark datasets across various application domains compared with start-of-the-art anomaly detection models.

Citations (1)

Summary

We haven't generated a summary for this paper yet.