Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cutting the cost of pulsar astronomy: Saving time and energy when searching for binary pulsars using NVIDIA GPUs (2211.13517v1)

Published 24 Nov 2022 in astro-ph.IM and cs.DC

Abstract: Using the Fourier Domain Acceleration Search (FDAS) method to search for binary pulsars is a computationally costly process. Next generation radio telescopes will have to perform FDAS in real time, as data volumes are too large to store. FDAS is a matched filtering approach for searching time-domain radio astronomy datasets for the signatures of binary pulsars with approximately linear acceleration. In this paper we will explore how we have reduced the energy cost of an SKA-like implementation of FDAS in AstroAccelerate, utilising a combination of mixed-precision computing and dynamic frequency scaling on NVIDIA GPUs. Combining the two approaches, we have managed to save 58% of the overall energy cost of FDAS with a (<3%) sacrifice in numerical sensitivity.

Citations (2)

Summary

We haven't generated a summary for this paper yet.