Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Can we Adopt Self-supervised Pretraining for Chest X-Rays? (2211.12931v1)

Published 23 Nov 2022 in cs.CV

Abstract: Chest radiograph (or Chest X-Ray, CXR) is a popular medical imaging modality that is used by radiologists across the world to diagnose heart or lung conditions. Over the last decade, Convolutional Neural Networks (CNN), have seen success in identifying pathologies in CXR images. Typically, these CNNs are pretrained on the standard ImageNet classification task, but this assumes availability of large-scale annotated datasets. In this work, we analyze the utility of pretraining on unlabeled ImageNet or Chest X-Ray (CXR) datasets using various algorithms and in multiple settings. Some findings of our work include: (i) supervised training with labeled ImageNet learns strong representations that are hard to beat; (ii) self-supervised pretraining on ImageNet (~1M images) shows performance similar to self-supervised pretraining on a CXR dataset (~100K images); and (iii) the CNN trained on supervised ImageNet can be trained further with self-supervised CXR images leading to improvements, especially when the downstream dataset is on the order of a few thousand images.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Arsh Verma (5 papers)
  2. Makarand Tapaswi (41 papers)
Citations (3)

Summary

We haven't generated a summary for this paper yet.