Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Reconnoitering the class distinguishing abilities of the features, to know them better (2211.12771v2)

Published 23 Nov 2022 in cs.LG and cs.CV

Abstract: The relevance of ML in our daily lives is closely intertwined with its explainability. Explainability can allow end-users to have a transparent and humane reckoning of a ML scheme's capability and utility. It will also foster the user's confidence in the automated decisions of a system. Explaining the variables or features to explain a model's decision is a need of the present times. We could not really find any work, which explains the features on the basis of their class-distinguishing abilities (specially when the real world data are mostly of multi-class nature). In any given dataset, a feature is not equally good at making distinctions between the different possible categorizations (or classes) of the data points. In this work, we explain the features on the basis of their class or category-distinguishing capabilities. We particularly estimate the class-distinguishing capabilities (scores) of the variables for pair-wise class combinations. We validate the explainability given by our scheme empirically on several real-world, multi-class datasets. We further utilize the class-distinguishing scores in a latent feature context and propose a novel decision making protocol. Another novelty of this work lies with a \emph{refuse to render decision} option when the latent variable (of the test point) has a high class-distinguishing potential for the likely classes.

Summary

We haven't generated a summary for this paper yet.