Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Tight Bound for Sum of Heterogeneous Random Variables: Application to Chance Constrained Programming (2211.12275v1)

Published 22 Nov 2022 in math.OC

Abstract: We study a tight Bennett-type concentration inequality for sums of heterogeneous and independent variables, defined as a one-dimensional minimization. We show that this refinement, which outperforms the standard known bounds, remains computationally tractable: we develop a polynomial-time algorithm to compute confidence bounds, proved to terminate with an epsilon-solution. From the proposed inequality, we deduce tight distributionally robust bounds to Chance-Constrained Programming problems. To illustrate the efficiency of our approach, we consider two use cases. First, we study the chance-constrained binary knapsack problem and highlight the efficiency of our cutting-plane approach by obtaining stronger solution than classical inequalities (such as Chebyshev-Cantelli or Hoeffding). Second, we deal with the Support Vector Machine problem, where the convex conservative approximation we obtain improves the robustness of the separation hyperplane, while staying computationally tractable.

Summary

We haven't generated a summary for this paper yet.