Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Causal Abstraction with Soft Interventions (2211.12270v1)

Published 22 Nov 2022 in cs.AI

Abstract: Causal abstraction provides a theory describing how several causal models can represent the same system at different levels of detail. Existing theoretical proposals limit the analysis of abstract models to "hard" interventions fixing causal variables to be constant values. In this work, we extend causal abstraction to "soft" interventions, which assign possibly non-constant functions to variables without adding new causal connections. Specifically, (i) we generalize $\tau$-abstraction from Beckers and Halpern (2019) to soft interventions, (ii) we propose a further definition of soft abstraction to ensure a unique map $\omega$ between soft interventions, and (iii) we prove that our constructive definition of soft abstraction guarantees the intervention map $\omega$ has a specific and necessary explicit form.

Citations (9)

Summary

We haven't generated a summary for this paper yet.