Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Rethinking Implicit Neural Representations for Vision Learners (2211.12040v3)

Published 22 Nov 2022 in cs.CV

Abstract: Implicit Neural Representations (INRs) are powerful to parameterize continuous signals in computer vision. However, almost all INRs methods are limited to low-level tasks, e.g., image/video compression, super-resolution, and image generation. The questions on how to explore INRs to high-level tasks and deep networks are still under-explored. Existing INRs methods suffer from two problems: 1) narrow theoretical definitions of INRs are inapplicable to high-level tasks; 2) lack of representation capabilities to deep networks. Motivated by the above facts, we reformulate the definitions of INRs from a novel perspective and propose an innovative Implicit Neural Representation Network (INRN), which is the first study of INRs to tackle both low-level and high-level tasks. Specifically, we present three key designs for basic blocks in INRN along with two different stacking ways and corresponding loss functions. Extensive experiments with analysis on both low-level tasks (image fitting) and high-level vision tasks (image classification, object detection, instance segmentation) demonstrate the effectiveness of the proposed method.

Citations (6)

Summary

We haven't generated a summary for this paper yet.