Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Entanglement Breaking Rank via Complementary Channels and Multiplicative Domains (2211.11909v1)

Published 21 Nov 2022 in math.OA and quant-ph

Abstract: Quantum entanglement can be studied through the theory of completely positive maps in a number of ways, including by making use of the Choi-Jamilkowski isomorphism, which identifies separable states with entanglement breaking quantum channels, and optimal ensemble length with entanglement breaking rank. The multiplicative domain is an important operator structure in the theory of completely positive maps. We introduce a new technique to determine if a channel is entanglement breaking and to evaluate entanglement breaking rank, based on an analysis of multiplicative domains determined by complementary quantum channels. We give a full description of the class of entanglement breaking channels that have a projection as their Choi matrix, and we show the entanglement breaking and Choi ranks of such channels are equal.

Citations (3)

Summary

We haven't generated a summary for this paper yet.