Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Leveraging Orbital Information and Atomic Feature in Deep Learning Model (2211.11543v1)

Published 29 Oct 2022 in cond-mat.mtrl-sci, cs.AI, and cs.LG

Abstract: Predicting material properties base on micro structure of materials has long been a challenging problem. Recently many deep learning methods have been developed for material property prediction. In this study, we propose a crystal representation learning framework, Orbital CrystalNet, OCrystalNet, which consists of two parts: atomic descriptor generation and graph representation learning. In OCrystalNet, we first incorporate orbital field matrix (OFM) and atomic features to construct OFM-feature atomic descriptor, and then the atomic descriptor is used as atom embedding in the atom-bond message passing module which takes advantage of the topological structure of crystal graphs to learn crystal representation. To demonstrate the capabilities of OCrystalNet we performed a number of prediction tasks on Material Project dataset and JARVIS dataset and compared our model with other baselines and state of art methods. To further present the effectiveness of OCrystalNet, we conducted ablation study and case study of our model. The results show that our model have various advantages over other state of art models.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Xiangrui Yang (4 papers)

Summary

We haven't generated a summary for this paper yet.