Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Machine Learning enabled models for YouTube Ranking Mechanism and Views Prediction (2211.11528v1)

Published 15 Nov 2022 in cs.IR, cs.AI, and cs.LG

Abstract: With the continuous increase of internet usage in todays time, everyone is influenced by this source of the power of technology. Due to this, the rise of applications and games Is unstoppable. A major percentage of our population uses these applications for multiple purposes. These range from education, communication, news, entertainment, and many more. Out of this, the application that is making sure that the world stays in touch with each other and with current affairs is social media. Social media applications have seen a boom in the last 10 years with the introduction of smartphones and the internet being available at affordable prices. Applications like Twitch and Youtube are some of the best platforms for producing content and expressing their talent as well. It is the goal of every content creator to post the best and most reliable content so that they can gain recognition. It is important to know the methods of achieving popularity easily, which is what this paper proposes to bring to the spotlight. There should be certain parameters based on which the reach of content could be multiplied by a good factor. The proposed research work aims to identify and estimate the reach, popularity, and views of a YouTube video by using certain features using machine learning and AI techniques. A ranking system would also be used keeping the trending videos in consideration. This would eventually help the content creator know how authentic their content is and healthy competition to make better content before uploading the video on the platform will be ensured.

Citations (4)

Summary

We haven't generated a summary for this paper yet.