Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the prime Selmer ranks of cyclic prime twist families of elliptic curves over global function fields (2211.11486v4)

Published 21 Nov 2022 in math.NT and math.PR

Abstract: Fix a prime number $p$. Let $\mathbb{F}_q$ be a finite field of characteristic coprime to 2, 3, and $p$, which also contains the primitive $p$-th root of unity $\mu_p$. Based on the works by Swinnerton-Dyer and Klagsbrun, Mazur, and Rubin, we prove that the probability distribution of the sizes of prime Selmer groups over a family of cyclic prime twists of non-isotrivial elliptic curves over $\mathbb{F}_q(t)$ satisfying a number of mild constraints conforms to the distribution conjectured by Bhargava, Kane, Lenstra, Poonen, and Rains with explicit error bounds. The key tools used in proving these results are the Riemann hypothesis over global function fields, the Erd\"os-Kac theorem, and the geometric ergodicity of Markov chains.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com