Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

DesNet: Decomposed Scale-Consistent Network for Unsupervised Depth Completion (2211.10994v1)

Published 20 Nov 2022 in cs.CV

Abstract: Unsupervised depth completion aims to recover dense depth from the sparse one without using the ground-truth annotation. Although depth measurement obtained from LiDAR is usually sparse, it contains valid and real distance information, i.e., scale-consistent absolute depth values. Meanwhile, scale-agnostic counterparts seek to estimate relative depth and have achieved impressive performance. To leverage both the inherent characteristics, we thus suggest to model scale-consistent depth upon unsupervised scale-agnostic frameworks. Specifically, we propose the decomposed scale-consistent learning (DSCL) strategy, which disintegrates the absolute depth into relative depth prediction and global scale estimation, contributing to individual learning benefits. But unfortunately, most existing unsupervised scale-agnostic frameworks heavily suffer from depth holes due to the extremely sparse depth input and weak supervised signal. To tackle this issue, we introduce the global depth guidance (GDG) module, which attentively propagates dense depth reference into the sparse target via novel dense-to-sparse attention. Extensive experiments show the superiority of our method on outdoor KITTI benchmark, ranking 1st and outperforming the best KBNet more than 12% in RMSE. In addition, our approach achieves state-of-the-art performance on indoor NYUv2 dataset.

Citations (20)

Summary

We haven't generated a summary for this paper yet.