Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
51 tokens/sec
2000 character limit reached

Recent Progress on Integrally Convex Functions (2211.10912v2)

Published 20 Nov 2022 in math.CO

Abstract: Integrally convex functions constitute a fundamental function class in discrete convex analysis, including M-convex functions, L-convex functions, and many others. This paper aims at a rather comprehensive survey of recent results on integrally convex functions with some new technical results. Topics covered in this paper include characterizations of integral convex sets and functions, operations on integral convex sets and functions, optimality criteria for minimization with a proximity-scaling algorithm, integral biconjugacy, and the discrete Fenchel duality. While the theory of M-convex and L-convex functions has been built upon fundamental results on matroids and submodular functions, developing the theory of integrally convex functions requires more general and basic tools such as the Fourier-Motzkin elimination.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.