Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exploring the Confounding Factors of Academic Career Success: An Empirical Study with Deep Predictive Modeling (2211.10615v1)

Published 19 Nov 2022 in cs.CY

Abstract: Understanding determinants of success in academic careers is critically important to both scholars and their employing organizations. While considerable research efforts have been made in this direction, there is still a lack of a quantitative approach to modeling the academic careers of scholars due to the massive confounding factors. To this end, in this paper, we propose to explore the determinants of academic career success through an empirical and predictive modeling perspective, with a focus on two typical academic honors, i.e., IEEE Fellow and ACM Fellow. We analyze the importance of different factors quantitatively, and obtain some insightful findings. Specifically, we analyze the co-author network and find that potential scholars work closely with influential scholars early on and more closely as they grow. Then we compare the academic performance of male and female Fellows. After comparison, we find that to be elected, females need to put in more effort than males. In addition, we also find that being a Fellow could not bring the improvements of citations and productivity growth. We hope these derived factors and findings can help scholars to improve their competitiveness and develop well in their academic careers.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Chenguang Du (4 papers)
  2. Deqing Wang (36 papers)
  3. Fuzhen Zhuang (97 papers)
  4. Hengshu Zhu (66 papers)

Summary

We haven't generated a summary for this paper yet.