Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Linear RNNs Provably Learn Linear Dynamic Systems (2211.10582v2)

Published 19 Nov 2022 in cs.LG, cs.SY, and eess.SY

Abstract: We study the learning ability of linear recurrent neural networks with Gradient Descent. We prove the first theoretical guarantee on linear RNNs to learn any stable linear dynamic system using any a large type of loss functions. For an arbitrary stable linear system with a parameter $\rho_C$ related to the transition matrix $C$, we show that despite the non-convexity of the parameter optimization loss if the width of the RNN is large enough (and the required width in hidden layers does not rely on the length of the input sequence), a linear RNN can provably learn any stable linear dynamic system with the sample and time complexity polynomial in $\frac{1}{1-\rho_C}$. Our results provide the first theoretical guarantee to learn a linear RNN and demonstrate how can the recurrent structure help to learn a dynamic system.

Summary

We haven't generated a summary for this paper yet.