Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Gumbel-Softmax Selective Networks (2211.10564v1)

Published 19 Nov 2022 in cs.LG and cs.CV

Abstract: ML models often operate within the context of a larger system that can adapt its response when the ML model is uncertain, such as falling back on safe defaults or a human in the loop. This commonly encountered operational context calls for principled techniques for training ML models with the option to abstain from predicting when uncertain. Selective neural networks are trained with an integrated option to abstain, allowing them to learn to recognize and optimize for the subset of the data distribution for which confident predictions can be made. However, optimizing selective networks is challenging due to the non-differentiability of the binary selection function (the discrete decision of whether to predict or abstain). This paper presents a general method for training selective networks that leverages the Gumbel-softmax reparameterization trick to enable selection within an end-to-end differentiable training framework. Experiments on public datasets demonstrate the potential of Gumbel-softmax selective networks for selective regression and classification.

Citations (1)

Summary

We haven't generated a summary for this paper yet.