Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Alignment of Group Fairness with Attribute Privacy (2211.10209v3)

Published 18 Nov 2022 in cs.LG and cs.CR

Abstract: Group fairness and privacy are fundamental aspects in designing trustworthy machine learning models. Previous research has highlighted conflicts between group fairness and different privacy notions. We are the first to demonstrate the alignment of group fairness with the specific privacy notion of attribute privacy in a blackbox setting. Attribute privacy, quantified by the resistance to attribute inference attacks (AIAs), requires indistinguishability in the target model's output predictions. Group fairness guarantees this thereby mitigating AIAs and achieving attribute privacy. To demonstrate this, we first introduce AdaptAIA, an enhancement of existing AIAs, tailored for real-world datasets with class imbalances in sensitive attributes. Through theoretical and extensive empirical analyses, we demonstrate the efficacy of two standard group fairness algorithms (i.e., adversarial debiasing and exponentiated gradient descent) against AdaptAIA. Additionally, since using group fairness results in attribute privacy, it acts as a defense against AIAs, which is currently lacking. Overall, we show that group fairness aligns with attribute privacy at no additional cost other than the already existing trade-off with model utility.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Jan Aalmoes (3 papers)
  2. Vasisht Duddu (21 papers)
  3. Antoine Boutet (15 papers)