Papers
Topics
Authors
Recent
Search
2000 character limit reached

Sobolev Spaces, Kernels and Discrepancies over Hyperspheres

Published 16 Nov 2022 in stat.ML and cs.LG | (2211.09196v1)

Abstract: This work provides theoretical foundations for kernel methods in the hyperspherical context. Specifically, we characterise the native spaces (reproducing kernel Hilbert spaces) and the Sobolev spaces associated with kernels defined over hyperspheres. Our results have direct consequences for kernel cubature, determining the rate of convergence of the worst case error, and expanding the applicability of cubature algorithms based on Stein's method. We first introduce a suitable characterisation on Sobolev spaces on the $d$-dimensional hypersphere embedded in $(d+1)$-dimensional Euclidean spaces. Our characterisation is based on the Fourier--Schoenberg sequences associated with a given kernel. Such sequences are hard (if not impossible) to compute analytically on $d$-dimensional spheres, but often feasible over Hilbert spheres. We circumvent this problem by finding a projection operator that allows to Fourier mapping from Hilbert into finite dimensional hyperspheres. We illustrate our findings through some parametric families of kernels.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.