Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Linearizations of matrix polynomials viewed as Rosenbrock's system matrices (2211.09056v1)

Published 16 Nov 2022 in math.NA and cs.NA

Abstract: A well known method to solve the Polynomial Eigenvalue Problem (PEP) is via linearization. That is, transforming the PEP into a generalized linear eigenvalue problem with the same spectral information and solving such linear problem with some of the eigenvalue algorithms available in the literature. Linearizations of matrix polynomials are usually defined using unimodular transformations. In this paper we establish a connection between the standard definition of linearization for matrix polynomials introduced by Gohberg, Lancaster and Rodman and the notion of polynomial system matrix introduced by Rosenbrock. This connection gives new techniques to show that a matrix pencil is a linearization of the corresponding matrix polynomial arising in a PEP.

Summary

We haven't generated a summary for this paper yet.