Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Convergence analysis of unsupervised Legendre-Galerkin neural networks for linear second-order elliptic PDEs (2211.08900v1)

Published 16 Nov 2022 in math.NA, cs.LG, and cs.NA

Abstract: In this paper, we perform the convergence analysis of unsupervised Legendre--Galerkin neural networks (ULGNet), a deep-learning-based numerical method for solving partial differential equations (PDEs). Unlike existing deep learning-based numerical methods for PDEs, the ULGNet expresses the solution as a spectral expansion with respect to the Legendre basis and predicts the coefficients with deep neural networks by solving a variational residual minimization problem. Since the corresponding loss function is equivalent to the residual induced by the linear algebraic system depending on the choice of basis functions, we prove that the minimizer of the discrete loss function converges to the weak solution of the PDEs. Numerical evidence will also be provided to support the theoretical result. Key technical tools include the variant of the universal approximation theorem for bounded neural networks, the analysis of the stiffness and mass matrices, and the uniform law of large numbers in terms of the Rademacher complexity.

Citations (3)

Summary

We haven't generated a summary for this paper yet.