Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

PrivacyProber: Assessment and Detection of Soft-Biometric Privacy-Enhancing Techniques (2211.08864v2)

Published 16 Nov 2022 in cs.CV

Abstract: Soft-biometric privacy-enhancing techniques represent machine learning methods that aim to: (i) mitigate privacy concerns associated with face recognition technology by suppressing selected soft-biometric attributes in facial images (e.g., gender, age, ethnicity) and (ii) make unsolicited extraction of sensitive personal information infeasible. Because such techniques are increasingly used in real-world applications, it is imperative to understand to what extent the privacy enhancement can be inverted and how much attribute information can be recovered from privacy-enhanced images. While these aspects are critical, they have not been investigated in the literature. We, therefore, study the robustness of several state-of-the-art soft-biometric privacy-enhancing techniques to attribute recovery attempts. We propose PrivacyProber, a high-level framework for restoring soft-biometric information from privacy-enhanced facial images, and apply it for attribute recovery in comprehensive experiments on three public face datasets, i.e., LFW, MUCT and Adience. Our experiments show that the proposed framework is able to restore a considerable amount of suppressed information, regardless of the privacy-enhancing technique used, but also that there are significant differences between the considered privacy models. These results point to the need for novel mechanisms that can improve the robustness of existing privacy-enhancing techniques and secure them against potential adversaries trying to restore suppressed information.

Citations (7)

Summary

We haven't generated a summary for this paper yet.