Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Annotation of Soft Onsets in String Ensemble Recordings (2211.08848v1)

Published 16 Nov 2022 in eess.AS, cs.IR, and cs.SD

Abstract: Onset detection is the process of identifying the start points of musical note events within an audio recording. While the detection of percussive onsets is often considered a solved problem, soft onsets-as found in string instrument recordings-still pose a significant challenge for state-of-the-art algorithms. The problem is further exacerbated by a paucity of data containing expert annotations and research related to best practices for curating soft onset annotations for string instruments. To this end, we investigate inter-annotator agreement between 24 participants, extend an algorithm for determining the most consistent annotator, and compare the performance of human annotators and state-of-the-art onset detection algorithms. Experimental results reveal a positive trend between musical experience and both inter-annotator agreement and performance in comparison with automated systems. Additionally, onsets produced by changes in fingering as well as those from the cello were found to be particularly challenging for both human annotators and automatic approaches. To promote research in best practices for annotation of soft onsets, we have made all experimental data associated with this study publicly available. In addition, we publish the ARME Virtuoso Strings dataset, consisting of over 144 recordings of professional performances of an excerpt from Haydn's string quartet Op. 74 No. 1 Finale, each with corresponding individual instrumental onset annotations.

Citations (1)

Summary

We haven't generated a summary for this paper yet.