Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Neurodevelopmental Phenotype Prediction: A State-of-the-Art Deep Learning Model (2211.08831v1)

Published 16 Nov 2022 in cs.CV and cs.LG

Abstract: A major challenge in medical image analysis is the automated detection of biomarkers from neuroimaging data. Traditional approaches, often based on image registration, are limited in capturing the high variability of cortical organisation across individuals. Deep learning methods have been shown to be successful in overcoming this difficulty, and some of them have even outperformed medical professionals on certain datasets. In this paper, we apply a deep neural network to analyse the cortical surface data of neonates, derived from the publicly available Developing Human Connectome Project (dHCP). Our goal is to identify neurodevelopmental biomarkers and to predict gestational age at birth based on these biomarkers. Using scans of preterm neonates acquired around the term-equivalent age, we were able to investigate the impact of preterm birth on cortical growth and maturation during late gestation. Besides reaching state-of-the-art prediction accuracy, the proposed model has much fewer parameters than the baselines, and its error stays low on both unregistered and registered cortical surfaces.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com