Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On some orthogonalization schemes in Tensor Train format (2211.08770v3)

Published 16 Nov 2022 in cs.DC, cs.NA, and math.NA

Abstract: In the framework of tensor spaces, we consider orthogonalization kernels to generate an orthogonal basis of a tensor subspace from a set of linearly independent tensors. In particular, we experimentally study the loss of orthogonality of six orthogonalization methods, namely Classical and Modified Gram-Schmidt with (CGS2, MGS2) and without (CGS, MGS) re-orthogonalization, the Gram approach, and the Householder transformation. To overcome the curse of dimensionality, we represent tensors with a low-rank approximation using the Tensor Train (TT) formalism. In addition, we introduce recompression steps in the standard algorithm outline through the TT-rounding method at a prescribed accuracy. After describing the structure and properties of the algorithms, we illustrate their loss of orthogonality with numerical experiments. The theoretical bounds from the classical matrix computation round-off analysis, obtained over several decades, seem to be maintained, with the unit round-off replaced by the TT-rounding accuracy. The computational analysis for each orthogonalization kernel in terms of the memory requirements and the computational complexity measured as a function of the number of TT-rounding, which happens to be the most computationally expensive operation, completes the study.

Citations (1)

Summary

We haven't generated a summary for this paper yet.