Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SATVSR: Scenario Adaptive Transformer for Cross Scenarios Video Super-Resolution (2211.08703v1)

Published 16 Nov 2022 in cs.CV

Abstract: Video Super-Resolution (VSR) aims to recover sequences of high-resolution (HR) frames from low-resolution (LR) frames. Previous methods mainly utilize temporally adjacent frames to assist the reconstruction of target frames. However, in the real world, there is a lot of irrelevant information in adjacent frames of videos with fast scene switching, these VSR methods cannot adaptively distinguish and select useful information. In contrast, with a transformer structure suitable for temporal tasks, we devise a novel adaptive scenario video super-resolution method. Specifically, we use optical flow to label the patches in each video frame, only calculate the attention of patches with the same label. Then select the most relevant label among them to supplement the spatial-temporal information of the target frame. This design can directly make the supplementary information come from the same scene as much as possible. We further propose a cross-scale feature aggregation module to better handle the scale variation problem. Compared with other video super-resolution methods, our method not only achieves significant performance gains on single-scene videos but also has better robustness on cross-scene datasets.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Yongjie Chen (1 paper)
  2. Tieru Wu (16 papers)

Summary

We haven't generated a summary for this paper yet.