Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Coronavirus statistics causes emotional bias: a social media text mining perspective (2211.08644v1)

Published 16 Nov 2022 in cs.CY and cs.SI

Abstract: While COVID-19 has impacted humans for a long time, people search the web for pandemic-related information, causing anxiety. From a theoretic perspective, previous studies have confirmed that the number of COVID-19 cases can cause negative emotions, but how statistics of different dimensions, such as the number of imported cases, the number of local cases, and the number of government-designated lockdown zones, stimulate people's emotions requires detailed understanding. In order to obtain the views of people on COVID-19, this paper first proposes a deep learning model which classifies texts related to the pandemic from text data with place labels. Next, it conducts a sentiment analysis based on multi-task learning. Finally, it carries out a fixed-effect panel regression with outputs of the sentiment analysis. The performance of the algorithm shows a promising result. The empirical study demonstrates while the number of local cases is positively associated with risk perception, the number of imported cases is negatively associated with confidence levels, which explains why citizens tend to ascribe the protracted pandemic to foreign factors. Besides, this study finds that previous pandemic hits cities recover slowly from the suffering, while local governments' spending on healthcare can improve the situation. Our study illustrates the reasons for risk perception and confidence based on different sources of statistical information due to cognitive bias. It complements the knowledge related to epidemic information. It also contributes to a framework that combines sentiment analysis using advanced deep learning technology with the empirical regression method.

Summary

We haven't generated a summary for this paper yet.