Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Hierarchical Deep Neural Network for Detecting Lines of Codes with Vulnerabilities (2211.08517v1)

Published 15 Nov 2022 in cs.CR, cs.AI, cs.LG, cs.PL, and cs.SE

Abstract: Software vulnerabilities, caused by unintentional flaws in source codes, are the main root cause of cyberattacks. Source code static analysis has been used extensively to detect the unintentional defects, i.e. vulnerabilities, introduced into the source codes by software developers. In this paper, we propose a deep learning approach to detect vulnerabilities from their LLVM IR representations based on the techniques that have been used in natural language processing. The proposed approach uses a hierarchical process to first identify source codes with vulnerabilities, and then it identifies the lines of codes that contribute to the vulnerability within the detected source codes. This proposed two-step approach reduces the false alarm of detecting vulnerable lines. Our extensive experiment on real-world and synthetic codes collected in NVD and SARD shows high accuracy (about 98\%) in detecting source code vulnerabilities.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Arash Mahyari (7 papers)
Citations (4)