Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stability and convergence of the Euler scheme for stochastic linear evolution equations in Banach spaces (2211.08375v5)

Published 15 Nov 2022 in math.NA, cs.NA, and math.PR

Abstract: For the Euler scheme of the stochastic linear evolution equations, discrete stochastic maximal $ Lp $-regularity estimate is established, and a sharp error estimate in the norm $ |\cdot|_{Lp((0,T)\times\Omega;Lq(\mathcal O))} $, $ p,q \in [2,\infty) $, is derived via a duality argument.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (25)
  1. H. Bessaih. Strong L2superscript𝐿2L^{2}italic_L start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT convergence of time numerical schemes for the stochastic two-dimensional Navier-Stokes equations. IMA J. Numer. Anal., 39:2135–2167, 2019.
  2. S. Blunck. Maximal regularity of discrete and continuous time evolution equations. Studia Math., 146:157–176, 2001.
  3. D. Breit and A. Dodgson. Convergence rates for the numerical approximation of the 2d stochastic Navier-Stokes equations. Numer. Math., 147:553–578, 2021.
  4. Time-splitting methods to solve the stochastic incompressible Stokes equation. SIAM J. Numer. Anal., 50:2917–2939, 2012.
  5. Finite-element-based discretizations of the incompressible Navier–Stokes equations with multiplicative random forcing. IMA J. Numer. Anal., 33:771–824, 2013.
  6. E. Carelli and A. Prohl. Rates of convergence for discretizations of the stochastic incompressible Navier-Stokes equations. SIAM J. Numer. Anal., 50:2467–2496, 2012.
  7. J. Cui and J. Hong. Strong and weak convergence rates of a spatial approximation for stochastic partial differential equation with one-sided lipschitz coefficient. SIAM J. Numer. Anal., 57:1815–1841, 2019.
  8. R. Denk and M. Kaip. General Parabolic Mixed Order Systems in Lpsubscript𝐿𝑝L_{p}italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT and Applications, Operator Theory: Advances and Applications, vol. 239. Springer, Cham, 2013.
  9. Analysis in Banach spaces, Volume I: Martingales and Littlewood-Paley Theory. Springer, Cham, 2016.
  10. Analysis in Banach spaces, Volume II: Probabilistic Methods and Operator Theory. Springer, Cham, 2017.
  11. T. Kemmochi. Discrete maximal regularity for abstract cauchy problems. Studia Math., 234:241–263, 2016.
  12. T. Kemmochi and N. Saito. Discrete maximal regularity and the finite element method for parabolic equations. Numer. Math., 138:905–937, 2018.
  13. A-stable time discretizations preserve maximal parabolic regularity. SIAM J. Numer. Anal., 54:3600–3624, 2016.
  14. R. Kruse. Strong and weak approximation of semilinear stochastic evolution equations. Springer, Cham, 2014.
  15. P.C. Kunstmann and L. Weis. Maximal Lpsubscript𝐿𝑝L_{p}italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT-regularity for Parabolic Equations, Fourier Multiplier Theorems and H∞superscript𝐻H^{\infty}italic_H start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT-functional Calculus, pages 65–311. Springer, Berlin, 2004.
  16. D. Leykekhman and B. Vexler. Discrete maximal parabolic regularity for galerkin finite element methods. Numer. Math., 135:923–952, 2017.
  17. B. Li and W. Sun. Maximal Lpsuperscript𝐿𝑝L^{p}italic_L start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT analysis of finite element solutions for parabolic equations with nonsmooth coefficients in convex polyhedra. Math. Comp., 86:1071–1102, 2017.
  18. B. Li and W. Sun. Maximal regularity of fully discrete finite element solutions of parabolic equations. SIAM J. Numer. Anal., 55:521–542, 2017.
  19. J. Prüss and G. Simonett. Moving interfaces and quasilinear parabolic evolution equations. Birkhäuser Basel, 2016.
  20. K. B. Sinha and S. Srivastava. Theory of semigroups and applications. Springer, Singapore, 2017.
  21. Maximal Lpsuperscript𝐿𝑝L^{p}italic_L start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT-regularity for stochastic evolution equations. SIAM J. Math. Anal., 44:1372–1414, 2012.
  22. Stochastic maximal Lpsuperscript𝐿𝑝L^{p}italic_L start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT-regularity. Ann. Probab., 40:788–812, 2012.
  23. L. Weis. Operator-valued Fourier multiplier theorems and maximal Lpsubscript𝐿𝑝L_{p}italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT-regularity. Math. Ann., 319:735–758, 2001.
  24. Y. Yan. Galerkin finite element methods for stochastic parabolic partial differential equations. SIAM J. Numer. Anal., 43:1363–1384, 2005.
  25. Z. Zhang and G. E. Karniadakis. Numerical methods for stochastic partial differential equations with white noise. Springer, Cham, 2017.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com