Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Phase Distribution in Probabilistic Movement Primitives, Representing Time Variability for the Recognition and Reproduction of Human Movements (2211.08206v1)

Published 15 Nov 2022 in cs.RO

Abstract: Probabilistic Movement Primitives (ProMPs) are a widely used representation of movements for human-robot interaction. They also facilitate the factorization of temporal and spatial structure of movements. In this work we investigate a method to temporally align observations so that when learning ProMPs, information in the spatial structure of the observed motion is maximized while maintaining a smooth phase velocity. We apply the method on recordings of hand trajectories in a two-dimensional reaching task. A system for simultaneous recognition of movement and phase is proposed and performance of movement recognition and movement reproduction is discussed.

Citations (1)

Summary

We haven't generated a summary for this paper yet.