Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multilingual and Multimodal Topic Modelling with Pretrained Embeddings (2211.08057v1)

Published 15 Nov 2022 in cs.CL and cs.AI

Abstract: This paper presents M3L-Contrast -- a novel multimodal multilingual (M3L) neural topic model for comparable data that maps texts from multiple languages and images into a shared topic space. Our model is trained jointly on texts and images and takes advantage of pretrained document and image embeddings to abstract the complexities between different languages and modalities. As a multilingual topic model, it produces aligned language-specific topics and as multimodal model, it infers textual representations of semantic concepts in images. We demonstrate that our model is competitive with a zero-shot topic model in predicting topic distributions for comparable multilingual data and significantly outperforms a zero-shot model in predicting topic distributions for comparable texts and images. We also show that our model performs almost as well on unaligned embeddings as it does on aligned embeddings.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Elaine Zosa (9 papers)
  2. Lidia Pivovarova (6 papers)
Citations (6)

Summary

We haven't generated a summary for this paper yet.