Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Byzantine Spectral Ranking (2211.07902v1)

Published 15 Nov 2022 in cs.LG

Abstract: We study the problem of rank aggregation where the goal is to obtain a global ranking by aggregating pair-wise comparisons of voters over a set of items. We consider an adversarial setting where the voters are partitioned into two sets. The first set votes in a stochastic manner according to the popular score-based Bradley-Terry-Luce (BTL) model for pairwise comparisons. The second set comprises malicious Byzantine voters trying to deteriorate the ranking. We consider a strongly-adversarial scenario where the Byzantine voters know the BTL scores, the votes of the good voters, the algorithm, and can collude with each other. We first show that the popular spectral ranking based Rank-Centrality algorithm, though optimal for the BTL model, does not perform well even when a small constant fraction of the voters are Byzantine. We introduce the Byzantine Spectral Ranking Algorithm (and a faster variant of it), which produces a reliable ranking when the number of good voters exceeds the number of Byzantine voters. We show that no algorithm can produce a satisfactory ranking with probability > 1/2 for all BTL weights when there are more Byzantine voters than good voters, showing that our algorithm works for all possible population fractions. We support our theoretical results with experimental results on synthetic and real datasets to demonstrate the failure of the Rank-Centrality algorithm under several adversarial scenarios and how the proposed Byzantine Spectral Ranking algorithm is robust in obtaining good rankings.

Citations (4)

Summary

We haven't generated a summary for this paper yet.