Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

(When) Are Contrastive Explanations of Reinforcement Learning Helpful? (2211.07719v1)

Published 14 Nov 2022 in cs.LG and cs.HC

Abstract: Global explanations of a reinforcement learning (RL) agent's expected behavior can make it safer to deploy. However, such explanations are often difficult to understand because of the complicated nature of many RL policies. Effective human explanations are often contrastive, referencing a known contrast (policy) to reduce redundancy. At the same time, these explanations also require the additional effort of referencing that contrast when evaluating an explanation. We conduct a user study to understand whether and when contrastive explanations might be preferable to complete explanations that do not require referencing a contrast. We find that complete explanations are generally more effective when they are the same size or smaller than a contrastive explanation of the same policy, and no worse when they are larger. This suggests that contrastive explanations are not sufficient to solve the problem of effectively explaining reinforcement learning policies, and require additional careful study for use in this context.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Sanjana Narayanan (3 papers)
  2. Isaac Lage (9 papers)
  3. Finale Doshi-Velez (134 papers)
Citations (1)