Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Redeeming Intrinsic Rewards via Constrained Optimization (2211.07627v2)

Published 14 Nov 2022 in cs.LG and cs.AI

Abstract: State-of-the-art reinforcement learning (RL) algorithms typically use random sampling (e.g., $\epsilon$-greedy) for exploration, but this method fails on hard exploration tasks like Montezuma's Revenge. To address the challenge of exploration, prior works incentivize exploration by rewarding the agent when it visits novel states. Such intrinsic rewards (also called exploration bonus or curiosity) often lead to excellent performance on hard exploration tasks. However, on easy exploration tasks, the agent gets distracted by intrinsic rewards and performs unnecessary exploration even when sufficient task (also called extrinsic) reward is available. Consequently, such an overly curious agent performs worse than an agent trained with only task reward. Such inconsistency in performance across tasks prevents the widespread use of intrinsic rewards with RL algorithms. We propose a principled constrained optimization procedure called Extrinsic-Intrinsic Policy Optimization (EIPO) that automatically tunes the importance of the intrinsic reward: it suppresses the intrinsic reward when exploration is unnecessary and increases it when exploration is required. The results is superior exploration that does not require manual tuning in balancing the intrinsic reward against the task reward. Consistent performance gains across sixty-one ATARI games validate our claim. The code is available at https://github.com/Improbable-AI/eipo.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Eric Chen (35 papers)
  2. Zhang-Wei Hong (31 papers)
  3. Joni Pajarinen (68 papers)
  4. Pulkit Agrawal (103 papers)
Citations (22)