Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SlabLU: A Two-Level Sparse Direct Solver for Elliptic PDEs (2211.07572v2)

Published 14 Nov 2022 in math.NA and cs.NA

Abstract: The paper describes a sparse direct solver for the linear systems that arise from the discretization of an elliptic PDE on a two dimensional domain. The solver is designed to reduce communication costs and perform well on GPUs; it uses a two-level framework, which is easier to implement and optimize than traditional multi-frontal schemes based on hierarchical nested dissection orderings. The scheme decomposes the domain into thin subdomains, or "slabs". Within each slab, a local factorization is executed that exploits the geometry of the local domain. A global factorization is then obtained through the LU factorization of a block-tridiagonal reduced coefficient matrix. The solver has complexity $O(N{5/3})$ for the factorization step, and $O(N{7/6})$ for each solve once the factorization is completed. The solver described is compatible with a range of different local discretizations, and numerical experiments demonstrate its performance for regular discretizations of rectangular and curved geometries. The technique becomes particularly efficient when combined with very high-order convergent multi-domain spectral collocation schemes. With this discretization, a Helmholtz problem on a domain of size $1000 \lambda \times 1000 \lambda$ (for which $N=100 \mbox{M}$) is solved in 15 minutes to 6 correct digits on a high-powered desktop with GPU acceleration.

Citations (2)

Summary

We haven't generated a summary for this paper yet.