Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning to Answer Multilingual and Code-Mixed Questions (2211.07522v1)

Published 14 Nov 2022 in cs.CL

Abstract: Question-answering (QA) that comes naturally to humans is a critical component in seamless human-computer interaction. It has emerged as one of the most convenient and natural methods to interact with the web and is especially desirable in voice-controlled environments. Despite being one of the oldest research areas, the current QA system faces the critical challenge of handling multilingual queries. To build an Artificial Intelligent (AI) agent that can serve multilingual end users, a QA system is required to be language versatile and tailored to suit the multilingual environment. Recent advances in QA models have enabled surpassing human performance primarily due to the availability of a sizable amount of high-quality datasets. However, the majority of such annotated datasets are expensive to create and are only confined to the English language, making it challenging to acknowledge progress in foreign languages. Therefore, to measure a similar improvement in the multilingual QA system, it is necessary to invest in high-quality multilingual evaluation benchmarks. In this dissertation, we focus on advancing QA techniques for handling end-user queries in multilingual environments. This dissertation consists of two parts. In the first part, we explore multilingualism and a new dimension of multilingualism referred to as code-mixing. Second, we propose a technique to solve the task of multi-hop question generation by exploiting multiple documents. Experiments show our models achieve state-of-the-art performance on answer extraction, ranking, and generation tasks on multiple domains of MQA, VQA, and language generation. The proposed techniques are generic and can be widely used in various domains and languages to advance QA systems.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Deepak Gupta (77 papers)