Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the homology of big mapping class groups (2211.07470v3)

Published 14 Nov 2022 in math.GT, math.AT, and math.GR

Abstract: We prove that the mapping class group of the one-holed Cantor tree surface is acyclic. This in turn determines the homology of the mapping class group of the once-punctured Cantor tree surface (i.e. the plane minus a Cantor set), in particular answering a recent question of Calegari and Chen. We in fact prove these results for a general class of infinite-type surfaces called binary tree surfaces. To prove our results we use two main ingredients: one is a modification of an argument of Mather related to the notion of dissipated groups; the other is a general homological stability result for mapping class groups of infinite-type surfaces.

Citations (5)

Summary

We haven't generated a summary for this paper yet.