Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Neural Regression For Scale-Varying Targets (2211.07447v4)

Published 14 Nov 2022 in cs.LG

Abstract: In this work, we demonstrate that a major limitation of regression using a mean-squared error loss is its sensitivity to the scale of its targets. This makes learning settings consisting of target's whose values take on varying scales challenging. A recently-proposed alternative loss function, known as histogram loss, avoids this issue. However, its computational cost grows linearly with the number of buckets in the histogram, which renders prediction with real-valued targets intractable. To address this issue, we propose a novel approach to training deep learning models on real-valued regression targets, autoregressive regression, which learns a high-fidelity distribution by utilizing an autoregressive target decomposition. We demonstrate that this training objective allows us to solve regression tasks involving targets with different scales.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com