Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MT4SSL: Boosting Self-Supervised Speech Representation Learning by Integrating Multiple Targets (2211.07321v3)

Published 14 Nov 2022 in cs.CL, cs.AI, cs.SD, and eess.AS

Abstract: In this paper, we provide a new perspective on self-supervised speech models from how the training targets are obtained. We generalize the targets extractor into Offline Targets Extractor (Off-TE) and Online Targets Extractor (On-TE). Based on this, we propose a new multi-tasking learning framework for self-supervised learning, MT4SSL, which stands for Boosting Self-Supervised Speech Representation Learning by Integrating Multiple Targets. MT4SSL uses the K-means algorithm as an Off-TE and a teacher network without gradients as an On-TE, respectively. Our model outperforms previous SSL methods by nontrivial margins on the LibriSpeech benchmark, and is comparable to or even better than the best-performing models with fewer data. Furthermore, we find that using both Off-TE and On-TE results in better convergence in the pre-training phase. With both effectiveness and efficiency, we think doing multi-task learning on self-supervised speech models from our perspective is a promising trend.

Citations (20)

Summary

We haven't generated a summary for this paper yet.