Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Shared Loss between Generators of GANs (2211.07234v1)

Published 14 Nov 2022 in cs.LG and cs.AI

Abstract: Generative adversarial networks are generative models that are capable of replicating the implicit probability distribution of the input data with high accuracy. Traditionally, GANs consist of a Generator and a Discriminator which interact with each other to produce highly realistic artificial data. Traditional GANs fall prey to the mode collapse problem, which means that they are unable to generate the different variations of data present in the input dataset. Recently, multiple generators have been used to produce more realistic output by mitigating the mode collapse problem. We use this multiple generator framework. The novelty in this paper lies in making the generators compete against each other while interacting with the discriminator simultaneously. We show that this causes a dramatic reduction in the training time for GANs without affecting its performance.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Xin Wang (1307 papers)

Summary

We haven't generated a summary for this paper yet.