The closed span of some Exponential system $E_Λ$ in the spaces $L^p(γ,β)$, properties of a Biorthogonal family to $E_Λ$ in $L^2(γ,β)$, Moment problems, and a differential equation of Carleson (2211.07226v1)
Abstract: A set of complex numbers $\Lambda={\lambda_n,\mu_n}{n=1}{\infty}$ with multiple terms [ {\lambda_n,\mu_n}{n=1}{\infty}:= {\underbrace{\lambda_1,\lambda_1,\dots,\lambda_1}{\mu_1 - times}, \underbrace{\lambda_2,\lambda_2,\dots,\lambda_2}{\mu_2 - times},\dots, \underbrace{\lambda_k,\lambda_k,\dots,\lambda_k}{\mu_k - times},\dots} ] is said to belong to the $\bf ABC$ class if it satisfies three conditions: $\bf (A)$ $\sum{n=1}{\infty}\mu_n/|\lambda_n|<\infty$, $\bf (B)$ $\sup_{n\in\mathbb{N}}|\arg\lambda_n|<\pi/2$, $\bf (C)$ $\Lambda$ is an interpolating variety for the space of entire functions of exponential type zero. Assuming that $\Lambda\in\bf ABC$, we characterize in the spirit of the M\"{u}ntz-Sz\'{a}sz theorem, the closed span of its associated exponential system [ E_{\Lambda}:={xk e{\lambda_n x}:\, n\in\mathbb{N},\,\, k=0,1,2,\dots,\mu_n-1} ] in the Banach spaces $Lp(\gamma,\beta)$, where $-\infty<\gamma<\beta<\infty$ and $p\ge 1$. Related to $E_{\Lambda}$, we explore the properties of its unique biorthogonal sequence [ r_{\Lambda}={r_{n,k}:\, n\in\mathbb{N},\, k=0,1,\dots,\mu_n-1}\subset\overline{\text{span}}(E_{\Lambda}) ] in $L2(\gamma,\beta)$. As a result, we find a solution to the Moment problem [ \int_{\gamma}{\beta} f(t)\cdot tk e{\overline{\lambda_n} t}\, dt=d_{n,k},\qquad \forall\,\, n\in\mathbb{N}\quad \text{and}\quad k=0,1,\dots ,\mu_n-1,\quad d_{n,k}=O(e{a\Re\lambda_n})\,\, for\,\, a<\beta. ] Finally, we characterize the solution space of a differential equation of infinite order, studied by L. Carleson.