A note on reduction of tiling problems (2211.07140v1)
Abstract: We show that translational tiling problems in a quotient of $\mathbb{Z}d$ can be effectively reduced or ``simulated'' by translational tiling problems in $\mathbb{Z}d$. In particular, for any $d \in \mathbb{N}$, $k < d$ and $N_1,\ldots,N_k \in \mathbb{N}$ the existence of an aperiodic tile in $\mathbb{Z}{d-k} \times (\mathbb{Z} / N_1\mathbb{Z} \times \ldots \times \mathbb{Z} / N_k \mathbb{Z})$ implies the existence of an aperiodic tile in $\mathbb{Z}d$. Greenfeld and Tao have recently disproved the well-known periodic tiling conjecture in $\mathbb{Z}d$ for sufficiently large $d \in \mathbb{N}$ by constructing an aperiodic tile in $\mathbb{Z}{d-k} \times (\mathbb{Z} / N_1\mathbb{Z} \times \ldots \times \mathbb{Z} / N_k \mathbb{Z})$ for suitable $d,N_1,\ldots,N_k \in \mathbb{N}$.