Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
GPT-4o
Gemini 2.5 Pro Pro
o3 Pro
GPT-4.1 Pro
DeepSeek R1 via Azure Pro
2000 character limit reached

A note on reduction of tiling problems (2211.07140v1)

Published 14 Nov 2022 in math.CO and math.LO

Abstract: We show that translational tiling problems in a quotient of $\mathbb{Z}d$ can be effectively reduced or ``simulated'' by translational tiling problems in $\mathbb{Z}d$. In particular, for any $d \in \mathbb{N}$, $k < d$ and $N_1,\ldots,N_k \in \mathbb{N}$ the existence of an aperiodic tile in $\mathbb{Z}{d-k} \times (\mathbb{Z} / N_1\mathbb{Z} \times \ldots \times \mathbb{Z} / N_k \mathbb{Z})$ implies the existence of an aperiodic tile in $\mathbb{Z}d$. Greenfeld and Tao have recently disproved the well-known periodic tiling conjecture in $\mathbb{Z}d$ for sufficiently large $d \in \mathbb{N}$ by constructing an aperiodic tile in $\mathbb{Z}{d-k} \times (\mathbb{Z} / N_1\mathbb{Z} \times \ldots \times \mathbb{Z} / N_k \mathbb{Z})$ for suitable $d,N_1,\ldots,N_k \in \mathbb{N}$.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.