Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stationary measures for $\mathrm{SL}_2(\mathbb{R})$-actions on homogeneous bundles over flag varieties (2211.06911v1)

Published 13 Nov 2022 in math.DS

Abstract: Let $G$ be a real semisimple Lie group with finite centre and without compact factors, $Q<G$ a parabolic subgroup and $X$ a homogeneous space of $G$ admitting an equivariant projection on the flag variety $G/Q$ with fibres given by copies of lattice quotients of a semisimple factor of $Q$. Given a probability measure $\mu$, Zariski-dense in a copy of $H=\mathrm{SL}_2(\mathbb{R})$ in $G$, we give a description of $\mu$-stationary probability measures on $X$ and prove corresponding equidistribution results. Contrary to the results of Benoist-Quint corresponding to the case $G=Q$, the type of stationary measures that $\mu$ admits depends strongly on the position of $H$ relative to $Q$. We describe possible cases and treat all but one of them, among others using ideas from the works of Eskin-Mirzakhani and Eskin-Lindenstrauss.

Summary

We haven't generated a summary for this paper yet.